90 lines
2.8 KiB
C++
90 lines
2.8 KiB
C++
#include "scalar_constants.hpp"
|
|
|
|
namespace glm
|
|
{
|
|
template<typename T, qualifier Q>
|
|
GLM_FUNC_QUALIFIER qua<T, Q> exp(qua<T, Q> const& q)
|
|
{
|
|
vec<3, T, Q> u(q.x, q.y, q.z);
|
|
T const Angle = glm::length(u);
|
|
if (Angle < epsilon<T>())
|
|
return qua<T, Q>();
|
|
|
|
vec<3, T, Q> const v(u / Angle);
|
|
return qua<T, Q>(cos(Angle), sin(Angle) * v);
|
|
}
|
|
|
|
template<typename T, qualifier Q>
|
|
GLM_FUNC_QUALIFIER qua<T, Q> log(qua<T, Q> const& q)
|
|
{
|
|
vec<3, T, Q> u(q.x, q.y, q.z);
|
|
T Vec3Len = length(u);
|
|
|
|
if (Vec3Len < epsilon<T>())
|
|
{
|
|
if(q.w > static_cast<T>(0))
|
|
return qua<T, Q>::wxyz(log(q.w), static_cast<T>(0), static_cast<T>(0), static_cast<T>(0));
|
|
else if(q.w < static_cast<T>(0))
|
|
return qua<T, Q>::wxyz(log(-q.w), pi<T>(), static_cast<T>(0), static_cast<T>(0));
|
|
else
|
|
return qua<T, Q>::wxyz(std::numeric_limits<T>::infinity(), std::numeric_limits<T>::infinity(), std::numeric_limits<T>::infinity(), std::numeric_limits<T>::infinity());
|
|
}
|
|
else
|
|
{
|
|
T t = atan(Vec3Len, T(q.w)) / Vec3Len;
|
|
T QuatLen2 = Vec3Len * Vec3Len + q.w * q.w;
|
|
return qua<T, Q>::wxyz(static_cast<T>(0.5) * log(QuatLen2), t * q.x, t * q.y, t * q.z);
|
|
}
|
|
}
|
|
|
|
template<typename T, qualifier Q>
|
|
GLM_FUNC_QUALIFIER qua<T, Q> pow(qua<T, Q> const& x, T y)
|
|
{
|
|
//Raising to the power of 0 should yield 1
|
|
//Needed to prevent a division by 0 error later on
|
|
if(y > -epsilon<T>() && y < epsilon<T>())
|
|
return qua<T, Q>::wxyz(1,0,0,0);
|
|
|
|
//To deal with non-unit quaternions
|
|
T magnitude = sqrt(x.x * x.x + x.y * x.y + x.z * x.z + x.w *x.w);
|
|
|
|
T Angle;
|
|
if(abs(x.w / magnitude) > cos_one_over_two<T>())
|
|
{
|
|
//Scalar component is close to 1; using it to recover angle would lose precision
|
|
//Instead, we use the non-scalar components since sin() is accurate around 0
|
|
|
|
//Prevent a division by 0 error later on
|
|
T VectorMagnitude = x.x * x.x + x.y * x.y + x.z * x.z;
|
|
//Despite the compiler might say, we actually want to compare
|
|
//VectorMagnitude to 0. here; we could use denorm_int() compiling a
|
|
//project with unsafe maths optimizations might make the comparison
|
|
//always false, even when VectorMagnitude is 0.
|
|
if (VectorMagnitude < std::numeric_limits<T>::min()) {
|
|
//Equivalent to raising a real number to a power
|
|
return qua<T, Q>::wxyz(pow(x.w, y), 0, 0, 0);
|
|
}
|
|
|
|
Angle = asin(sqrt(VectorMagnitude) / magnitude);
|
|
}
|
|
else
|
|
{
|
|
//Scalar component is small, shouldn't cause loss of precision
|
|
Angle = acos(x.w / magnitude);
|
|
}
|
|
|
|
T NewAngle = Angle * y;
|
|
T Div = sin(NewAngle) / sin(Angle);
|
|
T Mag = pow(magnitude, y - static_cast<T>(1));
|
|
return qua<T, Q>::wxyz(cos(NewAngle) * magnitude * Mag, x.x * Div * Mag, x.y * Div * Mag, x.z * Div * Mag);
|
|
}
|
|
|
|
template<typename T, qualifier Q>
|
|
GLM_FUNC_QUALIFIER qua<T, Q> sqrt(qua<T, Q> const& x)
|
|
{
|
|
return pow(x, static_cast<T>(0.5));
|
|
}
|
|
}//namespace glm
|
|
|
|
|