Exponent/glm/detail/func_geometric_simd.inl

164 lines
4.0 KiB
C++

/// @ref core
/// @file glm/detail/func_geometric_simd.inl
#include "../simd/geometric.h"
#if GLM_ARCH & GLM_ARCH_SSE2_BIT
namespace glm{
namespace detail
{
template<qualifier Q>
struct compute_length<4, float, Q, true>
{
GLM_FUNC_QUALIFIER static float call(vec<4, float, Q> const& v)
{
return _mm_cvtss_f32(glm_vec4_length(v.data));
}
};
template<qualifier Q>
struct compute_distance<4, float, Q, true>
{
GLM_FUNC_QUALIFIER static float call(vec<4, float, Q> const& p0, vec<4, float, Q> const& p1)
{
return _mm_cvtss_f32(glm_vec4_distance(p0.data, p1.data));
}
};
template<qualifier Q>
struct compute_dot<vec<4, float, Q>, float, true>
{
GLM_FUNC_QUALIFIER static float call(vec<4, float, Q> const& x, vec<4, float, Q> const& y)
{
return _mm_cvtss_f32(glm_vec1_dot(x.data, y.data));
}
};
template<qualifier Q>
struct compute_cross<float, Q, true>
{
GLM_FUNC_QUALIFIER static vec<3, float, Q> call(vec<3, float, Q> const& a, vec<3, float, Q> const& b)
{
__m128 const set0 = _mm_set_ps(0.0f, a.z, a.y, a.x);
__m128 const set1 = _mm_set_ps(0.0f, b.z, b.y, b.x);
__m128 const xpd0 = glm_vec4_cross(set0, set1);
vec<4, float, Q> Result;
Result.data = xpd0;
return vec<3, float, Q>(Result);
}
};
template<qualifier Q>
struct compute_normalize<4, float, Q, true>
{
GLM_FUNC_QUALIFIER static vec<4, float, Q> call(vec<4, float, Q> const& v)
{
vec<4, float, Q> Result;
Result.data = glm_vec4_normalize(v.data);
return Result;
}
};
template<qualifier Q>
struct compute_faceforward<4, float, Q, true>
{
GLM_FUNC_QUALIFIER static vec<4, float, Q> call(vec<4, float, Q> const& N, vec<4, float, Q> const& I, vec<4, float, Q> const& Nref)
{
vec<4, float, Q> Result;
Result.data = glm_vec4_faceforward(N.data, I.data, Nref.data);
return Result;
}
};
template<qualifier Q>
struct compute_reflect<4, float, Q, true>
{
GLM_FUNC_QUALIFIER static vec<4, float, Q> call(vec<4, float, Q> const& I, vec<4, float, Q> const& N)
{
vec<4, float, Q> Result;
Result.data = glm_vec4_reflect(I.data, N.data);
return Result;
}
};
template<qualifier Q>
struct compute_refract<4, float, Q, true>
{
GLM_FUNC_QUALIFIER static vec<4, float, Q> call(vec<4, float, Q> const& I, vec<4, float, Q> const& N, float eta)
{
vec<4, float, Q> Result;
Result.data = glm_vec4_refract(I.data, N.data, _mm_set1_ps(eta));
return Result;
}
};
}//namespace detail
}//namespace glm
#elif GLM_ARCH & GLM_ARCH_NEON_BIT
namespace glm{
namespace detail
{
template<qualifier Q>
struct compute_length<4, float, Q, true>
{
GLM_FUNC_QUALIFIER static float call(vec<4, float, Q> const& v)
{
return sqrt(compute_dot<vec<4, float, Q>, float, true>::call(v, v));
}
};
template<qualifier Q>
struct compute_distance<4, float, Q, true>
{
GLM_FUNC_QUALIFIER static float call(vec<4, float, Q> const& p0, vec<4, float, Q> const& p1)
{
return compute_length<4, float, Q, true>::call(p1 - p0);
}
};
template<qualifier Q>
struct compute_dot<vec<4, float, Q>, float, true>
{
GLM_FUNC_QUALIFIER static float call(vec<4, float, Q> const& x, vec<4, float, Q> const& y)
{
#if GLM_ARCH & GLM_ARCH_ARMV8_BIT
float32x4_t v = vmulq_f32(x.data, y.data);
return vaddvq_f32(v);
#else // Armv7a with Neon
float32x4_t p = vmulq_f32(x.data, y.data);
float32x2_t v = vpadd_f32(vget_low_f32(p), vget_high_f32(p));
v = vpadd_f32(v, v);
return vget_lane_f32(v, 0);
#endif
}
};
template<qualifier Q>
struct compute_normalize<4, float, Q, true>
{
GLM_FUNC_QUALIFIER static vec<4, float, Q> call(vec<4, float, Q> const& v)
{
float32x4_t p = vmulq_f32(v.data, v.data);
#if GLM_ARCH & GLM_ARCH_ARMV8_BIT
p = vpaddq_f32(p, p);
p = vpaddq_f32(p, p);
#else
float32x2_t t = vpadd_f32(vget_low_f32(p), vget_high_f32(p));
t = vpadd_f32(t, t);
p = vcombine_f32(t, t);
#endif
float32x4_t vd = vrsqrteq_f32(p);
vec<4, float, Q> Result;
Result.data = vmulq_f32(v.data, vd);
return Result;
}
};
}//namespace detail
}//namespace glm
#endif//GLM_ARCH & GLM_ARCH_SSE2_BIT