147 lines
4.2 KiB
C++
147 lines
4.2 KiB
C++
/// @ref gtx_matrix_interpolation
|
|
|
|
#include "../ext/scalar_constants.hpp"
|
|
|
|
#include <limits>
|
|
|
|
namespace glm
|
|
{
|
|
template<typename T, qualifier Q>
|
|
GLM_FUNC_QUALIFIER void axisAngle(mat<4, 4, T, Q> const& m, vec<3, T, Q>& axis, T& angle)
|
|
{
|
|
T const epsilon =
|
|
std::numeric_limits<T>::epsilon() * static_cast<T>(1e2);
|
|
|
|
bool const nearSymmetrical =
|
|
abs(m[1][0] - m[0][1]) < epsilon &&
|
|
abs(m[2][0] - m[0][2]) < epsilon &&
|
|
abs(m[2][1] - m[1][2]) < epsilon;
|
|
|
|
if(nearSymmetrical)
|
|
{
|
|
bool const nearIdentity =
|
|
abs(m[1][0] + m[0][1]) < epsilon &&
|
|
abs(m[2][0] + m[0][2]) < epsilon &&
|
|
abs(m[2][1] + m[1][2]) < epsilon &&
|
|
abs(m[0][0] + m[1][1] + m[2][2] - T(3.0)) < epsilon;
|
|
if (nearIdentity)
|
|
{
|
|
angle = static_cast<T>(0.0);
|
|
axis = vec<3, T, Q>(
|
|
static_cast<T>(1.0), static_cast<T>(0.0), static_cast<T>(0.0));
|
|
return;
|
|
}
|
|
angle = pi<T>();
|
|
T xx = (m[0][0] + static_cast<T>(1.0)) * static_cast<T>(0.5);
|
|
T yy = (m[1][1] + static_cast<T>(1.0)) * static_cast<T>(0.5);
|
|
T zz = (m[2][2] + static_cast<T>(1.0)) * static_cast<T>(0.5);
|
|
T xy = (m[1][0] + m[0][1]) * static_cast<T>(0.25);
|
|
T xz = (m[2][0] + m[0][2]) * static_cast<T>(0.25);
|
|
T yz = (m[2][1] + m[1][2]) * static_cast<T>(0.25);
|
|
if((xx > yy) && (xx > zz))
|
|
{
|
|
if(xx < epsilon)
|
|
{
|
|
axis.x = static_cast<T>(0.0);
|
|
axis.y = static_cast<T>(0.7071);
|
|
axis.z = static_cast<T>(0.7071);
|
|
}
|
|
else
|
|
{
|
|
axis.x = sqrt(xx);
|
|
axis.y = xy / axis.x;
|
|
axis.z = xz / axis.x;
|
|
}
|
|
}
|
|
else if (yy > zz)
|
|
{
|
|
if(yy < epsilon)
|
|
{
|
|
axis.x = static_cast<T>(0.7071);
|
|
axis.y = static_cast<T>(0.0);
|
|
axis.z = static_cast<T>(0.7071);
|
|
}
|
|
else
|
|
{
|
|
axis.y = sqrt(yy);
|
|
axis.x = xy / axis.y;
|
|
axis.z = yz / axis.y;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (zz < epsilon)
|
|
{
|
|
axis.x = static_cast<T>(0.7071);
|
|
axis.y = static_cast<T>(0.7071);
|
|
axis.z = static_cast<T>(0.0);
|
|
}
|
|
else
|
|
{
|
|
axis.z = sqrt(zz);
|
|
axis.x = xz / axis.z;
|
|
axis.y = yz / axis.z;
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
T const angleCos = (m[0][0] + m[1][1] + m[2][2] - static_cast<T>(1)) * static_cast<T>(0.5);
|
|
if(angleCos >= static_cast<T>(1.0))
|
|
{
|
|
angle = static_cast<T>(0.0);
|
|
}
|
|
else if (angleCos <= static_cast<T>(-1.0))
|
|
{
|
|
angle = pi<T>();
|
|
}
|
|
else
|
|
{
|
|
angle = acos(angleCos);
|
|
}
|
|
|
|
axis = glm::normalize(glm::vec<3, T, Q>(
|
|
m[1][2] - m[2][1], m[2][0] - m[0][2], m[0][1] - m[1][0]));
|
|
}
|
|
|
|
template<typename T, qualifier Q>
|
|
GLM_FUNC_QUALIFIER mat<4, 4, T, Q> axisAngleMatrix(vec<3, T, Q> const& axis, T const angle)
|
|
{
|
|
T c = cos(angle);
|
|
T s = sin(angle);
|
|
T t = static_cast<T>(1) - c;
|
|
vec<3, T, Q> n = normalize(axis);
|
|
|
|
return mat<4, 4, T, Q>(
|
|
t * n.x * n.x + c, t * n.x * n.y + n.z * s, t * n.x * n.z - n.y * s, static_cast<T>(0.0),
|
|
t * n.x * n.y - n.z * s, t * n.y * n.y + c, t * n.y * n.z + n.x * s, static_cast<T>(0.0),
|
|
t * n.x * n.z + n.y * s, t * n.y * n.z - n.x * s, t * n.z * n.z + c, static_cast<T>(0.0),
|
|
static_cast<T>(0.0), static_cast<T>(0.0), static_cast<T>(0.0), static_cast<T>(1.0));
|
|
}
|
|
|
|
template<typename T, qualifier Q>
|
|
GLM_FUNC_QUALIFIER mat<4, 4, T, Q> extractMatrixRotation(mat<4, 4, T, Q> const& m)
|
|
{
|
|
return mat<4, 4, T, Q>(
|
|
m[0][0], m[0][1], m[0][2], static_cast<T>(0.0),
|
|
m[1][0], m[1][1], m[1][2], static_cast<T>(0.0),
|
|
m[2][0], m[2][1], m[2][2], static_cast<T>(0.0),
|
|
static_cast<T>(0.0), static_cast<T>(0.0), static_cast<T>(0.0), static_cast<T>(1.0));
|
|
}
|
|
|
|
template<typename T, qualifier Q>
|
|
GLM_FUNC_QUALIFIER mat<4, 4, T, Q> interpolate(mat<4, 4, T, Q> const& m1, mat<4, 4, T, Q> const& m2, T const delta)
|
|
{
|
|
mat<4, 4, T, Q> m1rot = extractMatrixRotation(m1);
|
|
mat<4, 4, T, Q> dltRotation = m2 * transpose(m1rot);
|
|
vec<3, T, Q> dltAxis;
|
|
T dltAngle;
|
|
axisAngle(dltRotation, dltAxis, dltAngle);
|
|
mat<4, 4, T, Q> out = axisAngleMatrix(dltAxis, dltAngle * delta) * m1rot;
|
|
out[3][0] = m1[3][0] + delta * (m2[3][0] - m1[3][0]);
|
|
out[3][1] = m1[3][1] + delta * (m2[3][1] - m1[3][1]);
|
|
out[3][2] = m1[3][2] + delta * (m2[3][2] - m1[3][2]);
|
|
return out;
|
|
}
|
|
}//namespace glm
|