/// @ref gtx_pca /// @file glm/gtx/pca.hpp /// /// @see core (dependence) /// @see ext_scalar_relational (dependence) /// /// @defgroup gtx_pca GLM_GTX_pca /// @ingroup gtx /// /// Include to use the features of this extension. /// /// Implements functions required for fundamental 'princple component analysis' in 2D, 3D, and 4D: /// 1) Computing a covariance matrics from a list of _relative_ position vectors /// 2) Compute the eigenvalues and eigenvectors of the covariance matrics /// This is useful, e.g., to compute an object-aligned bounding box from vertices of an object. /// https://en.wikipedia.org/wiki/Principal_component_analysis /// /// Example: /// ``` /// std::vector ptData; /// // ... fill ptData with some point data, e.g. vertices /// /// glm::dvec3 center = computeCenter(ptData); /// /// glm::dmat3 covarMat = glm::computeCovarianceMatrix(ptData.data(), ptData.size(), center); /// /// glm::dvec3 evals; /// glm::dmat3 evecs; /// int evcnt = glm::findEigenvaluesSymReal(covarMat, evals, evecs); /// /// if(evcnt != 3) /// // ... error handling /// /// glm::sortEigenvalues(evals, evecs); /// /// // ... now evecs[0] points in the direction (symmetric) of the largest spatial distribution within ptData /// ``` #pragma once // Dependency: #include "../glm.hpp" #include "../ext/scalar_relational.hpp" #ifndef GLM_ENABLE_EXPERIMENTAL # error "GLM: GLM_GTX_pca is an experimental extension and may change in the future. Use #define GLM_ENABLE_EXPERIMENTAL before including it, if you really want to use it." #elif GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) # pragma message("GLM: GLM_GTX_pca extension included") #endif namespace glm { /// @addtogroup gtx_pca /// @{ /// Compute a covariance matrix form an array of relative coordinates `v` (e.g., relative to the center of gravity of the object) /// @param v Points to a memory holding `n` times vectors /// @param n Number of points in v template GLM_INLINE mat computeCovarianceMatrix(vec const* v, size_t n); /// Compute a covariance matrix form an array of absolute coordinates `v` and a precomputed center of gravity `c` /// @param v Points to a memory holding `n` times vectors /// @param n Number of points in v /// @param c Precomputed center of gravity template GLM_INLINE mat computeCovarianceMatrix(vec const* v, size_t n, vec const& c); /// Compute a covariance matrix form a pair of iterators `b` (begin) and `e` (end) of a container with relative coordinates (e.g., relative to the center of gravity of the object) /// Dereferencing an iterator of type I must yield a `vec<D, T, Q%gt;` template GLM_FUNC_DECL mat computeCovarianceMatrix(I const& b, I const& e); /// Compute a covariance matrix form a pair of iterators `b` (begin) and `e` (end) of a container with absolute coordinates and a precomputed center of gravity `c` /// Dereferencing an iterator of type I must yield a `vec<D, T, Q%gt;` template GLM_FUNC_DECL mat computeCovarianceMatrix(I const& b, I const& e, vec const& c); /// Assuming the provided covariance matrix `covarMat` is symmetric and real-valued, this function find the `D` Eigenvalues of the matrix, and also provides the corresponding Eigenvectors. /// Note: the data in `outEigenvalues` and `outEigenvectors` are in matching order, i.e. `outEigenvector[i]` is the Eigenvector of the Eigenvalue `outEigenvalue[i]`. /// This is a numeric implementation to find the Eigenvalues, using 'QL decomposition` (variant of QR decomposition: https://en.wikipedia.org/wiki/QR_decomposition). /// /// @param[in] covarMat A symmetric, real-valued covariance matrix, e.g. computed from computeCovarianceMatrix /// @param[out] outEigenvalues Vector to receive the found eigenvalues /// @param[out] outEigenvectors Matrix to receive the found eigenvectors corresponding to the found eigenvalues, as column vectors /// @return The number of eigenvalues found, usually D if the precondition of the covariance matrix is met. template GLM_FUNC_DECL unsigned int findEigenvaluesSymReal ( mat const& covarMat, vec& outEigenvalues, mat& outEigenvectors ); /// Sorts a group of Eigenvalues&Eigenvectors, for largest Eigenvalue to smallest Eigenvalue. /// The data in `outEigenvalues` and `outEigenvectors` are assumed to be matching order, i.e. `outEigenvector[i]` is the Eigenvector of the Eigenvalue `outEigenvalue[i]`. template GLM_FUNC_DISCARD_DECL void sortEigenvalues(vec<2, T, Q>& eigenvalues, mat<2, 2, T, Q>& eigenvectors); /// Sorts a group of Eigenvalues&Eigenvectors, for largest Eigenvalue to smallest Eigenvalue. /// The data in `outEigenvalues` and `outEigenvectors` are assumed to be matching order, i.e. `outEigenvector[i]` is the Eigenvector of the Eigenvalue `outEigenvalue[i]`. template GLM_FUNC_DISCARD_DECL void sortEigenvalues(vec<3, T, Q>& eigenvalues, mat<3, 3, T, Q>& eigenvectors); /// Sorts a group of Eigenvalues&Eigenvectors, for largest Eigenvalue to smallest Eigenvalue. /// The data in `outEigenvalues` and `outEigenvectors` are assumed to be matching order, i.e. `outEigenvector[i]` is the Eigenvector of the Eigenvalue `outEigenvalue[i]`. template GLM_FUNC_DISCARD_DECL void sortEigenvalues(vec<4, T, Q>& eigenvalues, mat<4, 4, T, Q>& eigenvectors); /// @} }//namespace glm #include "pca.inl"