/// @ref gtx_matrix_decompose #include "../gtc/constants.hpp" #include "../gtc/epsilon.hpp" #include "../gtx/transform.hpp" namespace glm{ namespace detail { /// Make a linear combination of two vectors and return the result. // result = (a * ascl) + (b * bscl) template GLM_FUNC_QUALIFIER vec<3, T, Q> combine( vec<3, T, Q> const& a, vec<3, T, Q> const& b, T ascl, T bscl) { return (a * ascl) + (b * bscl); } template GLM_FUNC_QUALIFIER vec<3, T, Q> scale(vec<3, T, Q> const& v, T desiredLength) { return v * desiredLength / length(v); } }//namespace detail // Matrix decompose // http://www.opensource.apple.com/source/WebCore/WebCore-514/platform/graphics/transforms/TransformationMatrix.cpp // Decomposes the mode matrix to translations,rotation scale components template GLM_FUNC_QUALIFIER bool decompose(mat<4, 4, T, Q> const& ModelMatrix, vec<3, T, Q> & Scale, qua & Orientation, vec<3, T, Q> & Translation, vec<3, T, Q> & Skew, vec<4, T, Q> & Perspective) { mat<4, 4, T, Q> LocalMatrix(ModelMatrix); // Normalize the matrix. if(epsilonEqual(LocalMatrix[3][3], static_cast(0), epsilon())) return false; for(length_t i = 0; i < 4; ++i) for(length_t j = 0; j < 4; ++j) LocalMatrix[i][j] /= LocalMatrix[3][3]; // perspectiveMatrix is used to solve for perspective, but it also provides // an easy way to test for singularity of the upper 3x3 component. mat<4, 4, T, Q> PerspectiveMatrix(LocalMatrix); for(length_t i = 0; i < 3; i++) PerspectiveMatrix[i][3] = static_cast(0); PerspectiveMatrix[3][3] = static_cast(1); /// TODO: Fixme! if(epsilonEqual(determinant(PerspectiveMatrix), static_cast(0), epsilon())) return false; // First, isolate perspective. This is the messiest. if( epsilonNotEqual(LocalMatrix[0][3], static_cast(0), epsilon()) || epsilonNotEqual(LocalMatrix[1][3], static_cast(0), epsilon()) || epsilonNotEqual(LocalMatrix[2][3], static_cast(0), epsilon())) { // rightHandSide is the right hand side of the equation. vec<4, T, Q> RightHandSide; RightHandSide[0] = LocalMatrix[0][3]; RightHandSide[1] = LocalMatrix[1][3]; RightHandSide[2] = LocalMatrix[2][3]; RightHandSide[3] = LocalMatrix[3][3]; // Solve the equation by inverting PerspectiveMatrix and multiplying // rightHandSide by the inverse. (This is the easiest way, not // necessarily the best.) mat<4, 4, T, Q> InversePerspectiveMatrix = glm::inverse(PerspectiveMatrix);// inverse(PerspectiveMatrix, inversePerspectiveMatrix); mat<4, 4, T, Q> TransposedInversePerspectiveMatrix = glm::transpose(InversePerspectiveMatrix);// transposeMatrix4(inversePerspectiveMatrix, transposedInversePerspectiveMatrix); Perspective = TransposedInversePerspectiveMatrix * RightHandSide; // v4MulPointByMatrix(rightHandSide, transposedInversePerspectiveMatrix, perspectivePoint); // Clear the perspective partition LocalMatrix[0][3] = LocalMatrix[1][3] = LocalMatrix[2][3] = static_cast(0); LocalMatrix[3][3] = static_cast(1); } else { // No perspective. Perspective = vec<4, T, Q>(0, 0, 0, 1); } // Next take care of translation (easy). Translation = vec<3, T, Q>(LocalMatrix[3]); LocalMatrix[3] = vec<4, T, Q>(0, 0, 0, LocalMatrix[3].w); vec<3, T, Q> Row[3], Pdum3; // Now get scale and shear. for(length_t i = 0; i < 3; ++i) for(length_t j = 0; j < 3; ++j) Row[i][j] = LocalMatrix[i][j]; // Compute X scale factor and normalize first row. Scale.x = length(Row[0]);// v3Length(Row[0]); Row[0] = detail::scale(Row[0], static_cast(1)); // Compute XY shear factor and make 2nd row orthogonal to 1st. Skew.z = dot(Row[0], Row[1]); Row[1] = detail::combine(Row[1], Row[0], static_cast(1), -Skew.z); // Now, compute Y scale and normalize 2nd row. Scale.y = length(Row[1]); Row[1] = detail::scale(Row[1], static_cast(1)); Skew.z /= Scale.y; // Compute XZ and YZ shears, orthogonalize 3rd row. Skew.y = glm::dot(Row[0], Row[2]); Row[2] = detail::combine(Row[2], Row[0], static_cast(1), -Skew.y); Skew.x = glm::dot(Row[1], Row[2]); Row[2] = detail::combine(Row[2], Row[1], static_cast(1), -Skew.x); // Next, get Z scale and normalize 3rd row. Scale.z = length(Row[2]); Row[2] = detail::scale(Row[2], static_cast(1)); Skew.y /= Scale.z; Skew.x /= Scale.z; // At this point, the matrix (in rows[]) is orthonormal. // Check for a coordinate system flip. If the determinant // is -1, then negate the matrix and the scaling factors. Pdum3 = cross(Row[1], Row[2]); // v3Cross(row[1], row[2], Pdum3); if(dot(Row[0], Pdum3) < 0) { for(length_t i = 0; i < 3; i++) { Scale[i] *= static_cast(-1); Row[i] *= static_cast(-1); } } // Now, get the rotations out, as described in the gem. // FIXME - Add the ability to return either quaternions (which are // easier to recompose with) or Euler angles (rx, ry, rz), which // are easier for authors to deal with. The latter will only be useful // when we fix https://bugs.webkit.org/show_bug.cgi?id=23799, so I // will leave the Euler angle code here for now. // ret.rotateY = asin(-Row[0][2]); // if (cos(ret.rotateY) != 0) { // ret.rotateX = atan2(Row[1][2], Row[2][2]); // ret.rotateZ = atan2(Row[0][1], Row[0][0]); // } else { // ret.rotateX = atan2(-Row[2][0], Row[1][1]); // ret.rotateZ = 0; // } int i, j, k = 0; T root, trace = Row[0].x + Row[1].y + Row[2].z; if(trace > static_cast(0)) { root = sqrt(trace + static_cast(1.0)); Orientation.w = static_cast(0.5) * root; root = static_cast(0.5) / root; Orientation.x = root * (Row[1].z - Row[2].y); Orientation.y = root * (Row[2].x - Row[0].z); Orientation.z = root * (Row[0].y - Row[1].x); } // End if > 0 else { static int Next[3] = {1, 2, 0}; i = 0; if(Row[1].y > Row[0].x) i = 1; if(Row[2].z > Row[i][i]) i = 2; j = Next[i]; k = Next[j]; # ifdef GLM_FORCE_QUAT_DATA_WXYZ int off = 1; # else int off = 0; # endif root = sqrt(Row[i][i] - Row[j][j] - Row[k][k] + static_cast(1.0)); Orientation[i + off] = static_cast(0.5) * root; root = static_cast(0.5) / root; Orientation[j + off] = root * (Row[i][j] + Row[j][i]); Orientation[k + off] = root * (Row[i][k] + Row[k][i]); Orientation.w = root * (Row[j][k] - Row[k][j]); } // End if <= 0 return true; } // Recomposes a model matrix from a previously-decomposed matrix // http://www.opensource.apple.com/source/WebCore/WebCore-514/platform/graphics/transforms/TransformationMatrix.cpp // https://stackoverflow.com/a/75573092/1047040 template GLM_FUNC_DECL mat<4, 4, T, Q> recompose( vec<3, T, Q> const& scale, qua const& orientation, vec<3, T, Q> const& translation, vec<3, T, Q> const& skew, vec<4, T, Q> const& perspective) { glm::mat4 m = glm::mat4(1.f); m[0][3] = perspective.x; m[1][3] = perspective.y; m[2][3] = perspective.z; m[3][3] = perspective.w; m *= glm::translate(translation); m *= glm::mat4_cast(orientation); if (abs(skew.x) > static_cast(0)) { glm::mat4 tmp(1.f); tmp[2][1] = skew.x; m *= tmp; } if (abs(skew.y) > static_cast(0)) { glm::mat4 tmp(1.f); tmp[2][0] = skew.y; m *= tmp; } if (abs(skew.z) > static_cast(0)) { glm::mat4 tmp(1.f); tmp[1][0] = skew.z; m *= tmp; } m *= glm::scale(scale); return m; } }//namespace glm