/// @ref gtx_matrix_interpolation #include "../ext/scalar_constants.hpp" #include namespace glm { template GLM_FUNC_QUALIFIER void axisAngle(mat<4, 4, T, Q> const& m, vec<3, T, Q>& axis, T& angle) { T const epsilon = std::numeric_limits::epsilon() * static_cast(1e2); bool const nearSymmetrical = abs(m[1][0] - m[0][1]) < epsilon && abs(m[2][0] - m[0][2]) < epsilon && abs(m[2][1] - m[1][2]) < epsilon; if(nearSymmetrical) { bool const nearIdentity = abs(m[1][0] + m[0][1]) < epsilon && abs(m[2][0] + m[0][2]) < epsilon && abs(m[2][1] + m[1][2]) < epsilon && abs(m[0][0] + m[1][1] + m[2][2] - T(3.0)) < epsilon; if (nearIdentity) { angle = static_cast(0.0); axis = vec<3, T, Q>( static_cast(1.0), static_cast(0.0), static_cast(0.0)); return; } angle = pi(); T xx = (m[0][0] + static_cast(1.0)) * static_cast(0.5); T yy = (m[1][1] + static_cast(1.0)) * static_cast(0.5); T zz = (m[2][2] + static_cast(1.0)) * static_cast(0.5); T xy = (m[1][0] + m[0][1]) * static_cast(0.25); T xz = (m[2][0] + m[0][2]) * static_cast(0.25); T yz = (m[2][1] + m[1][2]) * static_cast(0.25); if((xx > yy) && (xx > zz)) { if(xx < epsilon) { axis.x = static_cast(0.0); axis.y = static_cast(0.7071); axis.z = static_cast(0.7071); } else { axis.x = sqrt(xx); axis.y = xy / axis.x; axis.z = xz / axis.x; } } else if (yy > zz) { if(yy < epsilon) { axis.x = static_cast(0.7071); axis.y = static_cast(0.0); axis.z = static_cast(0.7071); } else { axis.y = sqrt(yy); axis.x = xy / axis.y; axis.z = yz / axis.y; } } else { if (zz < epsilon) { axis.x = static_cast(0.7071); axis.y = static_cast(0.7071); axis.z = static_cast(0.0); } else { axis.z = sqrt(zz); axis.x = xz / axis.z; axis.y = yz / axis.z; } } return; } T const angleCos = (m[0][0] + m[1][1] + m[2][2] - static_cast(1)) * static_cast(0.5); if(angleCos >= static_cast(1.0)) { angle = static_cast(0.0); } else if (angleCos <= static_cast(-1.0)) { angle = pi(); } else { angle = acos(angleCos); } axis = glm::normalize(glm::vec<3, T, Q>( m[1][2] - m[2][1], m[2][0] - m[0][2], m[0][1] - m[1][0])); } template GLM_FUNC_QUALIFIER mat<4, 4, T, Q> axisAngleMatrix(vec<3, T, Q> const& axis, T const angle) { T c = cos(angle); T s = sin(angle); T t = static_cast(1) - c; vec<3, T, Q> n = normalize(axis); return mat<4, 4, T, Q>( t * n.x * n.x + c, t * n.x * n.y + n.z * s, t * n.x * n.z - n.y * s, static_cast(0.0), t * n.x * n.y - n.z * s, t * n.y * n.y + c, t * n.y * n.z + n.x * s, static_cast(0.0), t * n.x * n.z + n.y * s, t * n.y * n.z - n.x * s, t * n.z * n.z + c, static_cast(0.0), static_cast(0.0), static_cast(0.0), static_cast(0.0), static_cast(1.0)); } template GLM_FUNC_QUALIFIER mat<4, 4, T, Q> extractMatrixRotation(mat<4, 4, T, Q> const& m) { return mat<4, 4, T, Q>( m[0][0], m[0][1], m[0][2], static_cast(0.0), m[1][0], m[1][1], m[1][2], static_cast(0.0), m[2][0], m[2][1], m[2][2], static_cast(0.0), static_cast(0.0), static_cast(0.0), static_cast(0.0), static_cast(1.0)); } template GLM_FUNC_QUALIFIER mat<4, 4, T, Q> interpolate(mat<4, 4, T, Q> const& m1, mat<4, 4, T, Q> const& m2, T const delta) { mat<4, 4, T, Q> m1rot = extractMatrixRotation(m1); mat<4, 4, T, Q> dltRotation = m2 * transpose(m1rot); vec<3, T, Q> dltAxis; T dltAngle; axisAngle(dltRotation, dltAxis, dltAngle); mat<4, 4, T, Q> out = axisAngleMatrix(dltAxis, dltAngle * delta) * m1rot; out[3][0] = m1[3][0] + delta * (m2[3][0] - m1[3][0]); out[3][1] = m1[3][1] + delta * (m2[3][1] - m1[3][1]); out[3][2] = m1[3][2] + delta * (m2[3][2] - m1[3][2]); return out; } }//namespace glm