#include "../integer.hpp" namespace glm{ namespace detail { template struct compute_ceilShift { GLM_FUNC_QUALIFIER static vec call(vec const& v, T) { return v; } }; template struct compute_ceilShift { GLM_FUNC_QUALIFIER static vec call(vec const& v, T Shift) { return v | (v >> Shift); } }; template struct compute_ceilPowerOfTwo { GLM_FUNC_QUALIFIER static vec call(vec const& x) { GLM_STATIC_ASSERT(!std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'ceilPowerOfTwo' only accept integer scalar or vector inputs"); vec const Sign(sign(x)); vec v(abs(x)); v = v - static_cast(1); v = v | (v >> static_cast(1)); v = v | (v >> static_cast(2)); v = v | (v >> static_cast(4)); v = compute_ceilShift= 2>::call(v, 8); v = compute_ceilShift= 4>::call(v, 16); v = compute_ceilShift= 8>::call(v, 32); return (v + static_cast(1)) * Sign; } }; template struct compute_ceilPowerOfTwo { GLM_FUNC_QUALIFIER static vec call(vec const& x) { GLM_STATIC_ASSERT(!std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'ceilPowerOfTwo' only accept integer scalar or vector inputs"); vec v(x); v = v - static_cast(1); v = v | (v >> static_cast(1)); v = v | (v >> static_cast(2)); v = v | (v >> static_cast(4)); v = compute_ceilShift= 2>::call(v, 8); v = compute_ceilShift= 4>::call(v, 16); v = compute_ceilShift= 8>::call(v, 32); return v + static_cast(1); } }; template struct compute_ceilMultiple{}; template<> struct compute_ceilMultiple { template GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple) { if(Source > genType(0)) return Source + (Multiple - std::fmod(Source, Multiple)); else return Source + std::fmod(-Source, Multiple); } }; template<> struct compute_ceilMultiple { template GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple) { genType Tmp = Source - genType(1); return Tmp + (Multiple - (Tmp % Multiple)); } }; template<> struct compute_ceilMultiple { template GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple) { assert(Multiple > genType(0)); if(Source > genType(0)) { genType Tmp = Source - genType(1); return Tmp + (Multiple - (Tmp % Multiple)); } else return Source + (-Source % Multiple); } }; template struct compute_floorMultiple{}; template<> struct compute_floorMultiple { template GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple) { if(Source >= genType(0)) return Source - std::fmod(Source, Multiple); else return Source - std::fmod(Source, Multiple) - Multiple; } }; template<> struct compute_floorMultiple { template GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple) { if(Source >= genType(0)) return Source - Source % Multiple; else { genType Tmp = Source + genType(1); return Tmp - Tmp % Multiple - Multiple; } } }; template<> struct compute_floorMultiple { template GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple) { if(Source >= genType(0)) return Source - Source % Multiple; else { genType Tmp = Source + genType(1); return Tmp - Tmp % Multiple - Multiple; } } }; }//namespace detail template GLM_FUNC_QUALIFIER bool isPowerOfTwo(genIUType Value) { GLM_STATIC_ASSERT(std::numeric_limits::is_integer, "'isPowerOfTwo' only accept integer inputs"); genIUType const Result = glm::abs(Value); return !(Result & (Result - 1)); } template GLM_FUNC_QUALIFIER genIUType nextPowerOfTwo(genIUType value) { GLM_STATIC_ASSERT(std::numeric_limits::is_integer, "'nextPowerOfTwo' only accept integer inputs"); return detail::compute_ceilPowerOfTwo<1, genIUType, defaultp, std::numeric_limits::is_signed>::call(vec<1, genIUType, defaultp>(value)).x; } template GLM_FUNC_QUALIFIER genIUType prevPowerOfTwo(genIUType value) { GLM_STATIC_ASSERT(std::numeric_limits::is_integer, "'prevPowerOfTwo' only accept integer inputs"); return isPowerOfTwo(value) ? value : static_cast(static_cast(1) << static_cast(findMSB(value))); } template GLM_FUNC_QUALIFIER bool isMultiple(genIUType Value, genIUType Multiple) { GLM_STATIC_ASSERT(std::numeric_limits::is_integer, "'isMultiple' only accept integer inputs"); return isMultiple(vec<1, genIUType>(Value), vec<1, genIUType>(Multiple)).x; } template GLM_FUNC_QUALIFIER genIUType nextMultiple(genIUType Source, genIUType Multiple) { GLM_STATIC_ASSERT(std::numeric_limits::is_integer, "'nextMultiple' only accept integer inputs"); return detail::compute_ceilMultiple::is_iec559, std::numeric_limits::is_signed>::call(Source, Multiple); } template GLM_FUNC_QUALIFIER genIUType prevMultiple(genIUType Source, genIUType Multiple) { GLM_STATIC_ASSERT(std::numeric_limits::is_integer, "'prevMultiple' only accept integer inputs"); return detail::compute_floorMultiple::is_iec559, std::numeric_limits::is_signed>::call(Source, Multiple); } template GLM_FUNC_QUALIFIER int findNSB(genIUType x, int significantBitCount) { GLM_STATIC_ASSERT(std::numeric_limits::is_integer, "'findNSB' only accept integer inputs"); if(bitCount(x) < significantBitCount) return -1; genIUType const One = static_cast(1); int bitPos = 0; genIUType key = x; int nBitCount = significantBitCount; int Step = sizeof(x) * 8 / 2; while (key > One) { genIUType Mask = static_cast((One << Step) - One); genIUType currentKey = key & Mask; int currentBitCount = bitCount(currentKey); if (nBitCount > currentBitCount) { nBitCount -= currentBitCount; bitPos += Step; key >>= static_cast(Step); } else { key = key & Mask; } Step >>= 1; } return static_cast(bitPos); } }//namespace glm