/// @ref gtx_euler_angles #include "compatibility.hpp" // glm::atan2 namespace glm { template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> eulerAngleX ( T const& angleX ) { T cosX = glm::cos(angleX); T sinX = glm::sin(angleX); return mat<4, 4, T, defaultp>( T(1), T(0), T(0), T(0), T(0), cosX, sinX, T(0), T(0),-sinX, cosX, T(0), T(0), T(0), T(0), T(1)); } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> eulerAngleY ( T const& angleY ) { T cosY = glm::cos(angleY); T sinY = glm::sin(angleY); return mat<4, 4, T, defaultp>( cosY, T(0), -sinY, T(0), T(0), T(1), T(0), T(0), sinY, T(0), cosY, T(0), T(0), T(0), T(0), T(1)); } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> eulerAngleZ ( T const& angleZ ) { T cosZ = glm::cos(angleZ); T sinZ = glm::sin(angleZ); return mat<4, 4, T, defaultp>( cosZ, sinZ, T(0), T(0), -sinZ, cosZ, T(0), T(0), T(0), T(0), T(1), T(0), T(0), T(0), T(0), T(1)); } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> derivedEulerAngleX ( T const & angleX, T const & angularVelocityX ) { T cosX = glm::cos(angleX) * angularVelocityX; T sinX = glm::sin(angleX) * angularVelocityX; return mat<4, 4, T, defaultp>( T(0), T(0), T(0), T(0), T(0),-sinX, cosX, T(0), T(0),-cosX,-sinX, T(0), T(0), T(0), T(0), T(0)); } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> derivedEulerAngleY ( T const & angleY, T const & angularVelocityY ) { T cosY = glm::cos(angleY) * angularVelocityY; T sinY = glm::sin(angleY) * angularVelocityY; return mat<4, 4, T, defaultp>( -sinY, T(0), -cosY, T(0), T(0), T(0), T(0), T(0), cosY, T(0), -sinY, T(0), T(0), T(0), T(0), T(0)); } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> derivedEulerAngleZ ( T const & angleZ, T const & angularVelocityZ ) { T cosZ = glm::cos(angleZ) * angularVelocityZ; T sinZ = glm::sin(angleZ) * angularVelocityZ; return mat<4, 4, T, defaultp>( -sinZ, cosZ, T(0), T(0), -cosZ, -sinZ, T(0), T(0), T(0), T(0), T(0), T(0), T(0), T(0), T(0), T(0)); } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> eulerAngleXY ( T const& angleX, T const& angleY ) { T cosX = glm::cos(angleX); T sinX = glm::sin(angleX); T cosY = glm::cos(angleY); T sinY = glm::sin(angleY); return mat<4, 4, T, defaultp>( cosY, -sinX * -sinY, cosX * -sinY, T(0), T(0), cosX, sinX, T(0), sinY, -sinX * cosY, cosX * cosY, T(0), T(0), T(0), T(0), T(1)); } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> eulerAngleYX ( T const& angleY, T const& angleX ) { T cosX = glm::cos(angleX); T sinX = glm::sin(angleX); T cosY = glm::cos(angleY); T sinY = glm::sin(angleY); return mat<4, 4, T, defaultp>( cosY, 0, -sinY, T(0), sinY * sinX, cosX, cosY * sinX, T(0), sinY * cosX, -sinX, cosY * cosX, T(0), T(0), T(0), T(0), T(1)); } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> eulerAngleXZ ( T const& angleX, T const& angleZ ) { return eulerAngleX(angleX) * eulerAngleZ(angleZ); } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> eulerAngleZX ( T const& angleZ, T const& angleX ) { return eulerAngleZ(angleZ) * eulerAngleX(angleX); } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> eulerAngleYZ ( T const& angleY, T const& angleZ ) { return eulerAngleY(angleY) * eulerAngleZ(angleZ); } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> eulerAngleZY ( T const& angleZ, T const& angleY ) { return eulerAngleZ(angleZ) * eulerAngleY(angleY); } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> eulerAngleXYZ ( T const& t1, T const& t2, T const& t3 ) { T c1 = glm::cos(-t1); T c2 = glm::cos(-t2); T c3 = glm::cos(-t3); T s1 = glm::sin(-t1); T s2 = glm::sin(-t2); T s3 = glm::sin(-t3); mat<4, 4, T, defaultp> Result; Result[0][0] = c2 * c3; Result[0][1] =-c1 * s3 + s1 * s2 * c3; Result[0][2] = s1 * s3 + c1 * s2 * c3; Result[0][3] = static_cast(0); Result[1][0] = c2 * s3; Result[1][1] = c1 * c3 + s1 * s2 * s3; Result[1][2] =-s1 * c3 + c1 * s2 * s3; Result[1][3] = static_cast(0); Result[2][0] =-s2; Result[2][1] = s1 * c2; Result[2][2] = c1 * c2; Result[2][3] = static_cast(0); Result[3][0] = static_cast(0); Result[3][1] = static_cast(0); Result[3][2] = static_cast(0); Result[3][3] = static_cast(1); return Result; } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> eulerAngleYXZ ( T const& yaw, T const& pitch, T const& roll ) { T tmp_ch = glm::cos(yaw); T tmp_sh = glm::sin(yaw); T tmp_cp = glm::cos(pitch); T tmp_sp = glm::sin(pitch); T tmp_cb = glm::cos(roll); T tmp_sb = glm::sin(roll); mat<4, 4, T, defaultp> Result; Result[0][0] = tmp_ch * tmp_cb + tmp_sh * tmp_sp * tmp_sb; Result[0][1] = tmp_sb * tmp_cp; Result[0][2] = -tmp_sh * tmp_cb + tmp_ch * tmp_sp * tmp_sb; Result[0][3] = static_cast(0); Result[1][0] = -tmp_ch * tmp_sb + tmp_sh * tmp_sp * tmp_cb; Result[1][1] = tmp_cb * tmp_cp; Result[1][2] = tmp_sb * tmp_sh + tmp_ch * tmp_sp * tmp_cb; Result[1][3] = static_cast(0); Result[2][0] = tmp_sh * tmp_cp; Result[2][1] = -tmp_sp; Result[2][2] = tmp_ch * tmp_cp; Result[2][3] = static_cast(0); Result[3][0] = static_cast(0); Result[3][1] = static_cast(0); Result[3][2] = static_cast(0); Result[3][3] = static_cast(1); return Result; } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> eulerAngleXZX ( T const & t1, T const & t2, T const & t3 ) { T c1 = glm::cos(t1); T s1 = glm::sin(t1); T c2 = glm::cos(t2); T s2 = glm::sin(t2); T c3 = glm::cos(t3); T s3 = glm::sin(t3); mat<4, 4, T, defaultp> Result; Result[0][0] = c2; Result[0][1] = c1 * s2; Result[0][2] = s1 * s2; Result[0][3] = static_cast(0); Result[1][0] =-c3 * s2; Result[1][1] = c1 * c2 * c3 - s1 * s3; Result[1][2] = c1 * s3 + c2 * c3 * s1; Result[1][3] = static_cast(0); Result[2][0] = s2 * s3; Result[2][1] =-c3 * s1 - c1 * c2 * s3; Result[2][2] = c1 * c3 - c2 * s1 * s3; Result[2][3] = static_cast(0); Result[3][0] = static_cast(0); Result[3][1] = static_cast(0); Result[3][2] = static_cast(0); Result[3][3] = static_cast(1); return Result; } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> eulerAngleXYX ( T const & t1, T const & t2, T const & t3 ) { T c1 = glm::cos(t1); T s1 = glm::sin(t1); T c2 = glm::cos(t2); T s2 = glm::sin(t2); T c3 = glm::cos(t3); T s3 = glm::sin(t3); mat<4, 4, T, defaultp> Result; Result[0][0] = c2; Result[0][1] = s1 * s2; Result[0][2] =-c1 * s2; Result[0][3] = static_cast(0); Result[1][0] = s2 * s3; Result[1][1] = c1 * c3 - c2 * s1 * s3; Result[1][2] = c3 * s1 + c1 * c2 * s3; Result[1][3] = static_cast(0); Result[2][0] = c3 * s2; Result[2][1] =-c1 * s3 - c2 * c3 * s1; Result[2][2] = c1 * c2 * c3 - s1 * s3; Result[2][3] = static_cast(0); Result[3][0] = static_cast(0); Result[3][1] = static_cast(0); Result[3][2] = static_cast(0); Result[3][3] = static_cast(1); return Result; } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> eulerAngleYXY ( T const & t1, T const & t2, T const & t3 ) { T c1 = glm::cos(t1); T s1 = glm::sin(t1); T c2 = glm::cos(t2); T s2 = glm::sin(t2); T c3 = glm::cos(t3); T s3 = glm::sin(t3); mat<4, 4, T, defaultp> Result; Result[0][0] = c1 * c3 - c2 * s1 * s3; Result[0][1] = s2* s3; Result[0][2] =-c3 * s1 - c1 * c2 * s3; Result[0][3] = static_cast(0); Result[1][0] = s1 * s2; Result[1][1] = c2; Result[1][2] = c1 * s2; Result[1][3] = static_cast(0); Result[2][0] = c1 * s3 + c2 * c3 * s1; Result[2][1] =-c3 * s2; Result[2][2] = c1 * c2 * c3 - s1 * s3; Result[2][3] = static_cast(0); Result[3][0] = static_cast(0); Result[3][1] = static_cast(0); Result[3][2] = static_cast(0); Result[3][3] = static_cast(1); return Result; } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> eulerAngleYZY ( T const & t1, T const & t2, T const & t3 ) { T c1 = glm::cos(t1); T s1 = glm::sin(t1); T c2 = glm::cos(t2); T s2 = glm::sin(t2); T c3 = glm::cos(t3); T s3 = glm::sin(t3); mat<4, 4, T, defaultp> Result; Result[0][0] = c1 * c2 * c3 - s1 * s3; Result[0][1] = c3 * s2; Result[0][2] =-c1 * s3 - c2 * c3 * s1; Result[0][3] = static_cast(0); Result[1][0] =-c1 * s2; Result[1][1] = c2; Result[1][2] = s1 * s2; Result[1][3] = static_cast(0); Result[2][0] = c3 * s1 + c1 * c2 * s3; Result[2][1] = s2 * s3; Result[2][2] = c1 * c3 - c2 * s1 * s3; Result[2][3] = static_cast(0); Result[3][0] = static_cast(0); Result[3][1] = static_cast(0); Result[3][2] = static_cast(0); Result[3][3] = static_cast(1); return Result; } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> eulerAngleZYZ ( T const & t1, T const & t2, T const & t3 ) { T c1 = glm::cos(t1); T s1 = glm::sin(t1); T c2 = glm::cos(t2); T s2 = glm::sin(t2); T c3 = glm::cos(t3); T s3 = glm::sin(t3); mat<4, 4, T, defaultp> Result; Result[0][0] = c1 * c2 * c3 - s1 * s3; Result[0][1] = c1 * s3 + c2 * c3 * s1; Result[0][2] =-c3 * s2; Result[0][3] = static_cast(0); Result[1][0] =-c3 * s1 - c1 * c2 * s3; Result[1][1] = c1 * c3 - c2 * s1 * s3; Result[1][2] = s2 * s3; Result[1][3] = static_cast(0); Result[2][0] = c1 * s2; Result[2][1] = s1 * s2; Result[2][2] = c2; Result[2][3] = static_cast(0); Result[3][0] = static_cast(0); Result[3][1] = static_cast(0); Result[3][2] = static_cast(0); Result[3][3] = static_cast(1); return Result; } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> eulerAngleZXZ ( T const & t1, T const & t2, T const & t3 ) { T c1 = glm::cos(t1); T s1 = glm::sin(t1); T c2 = glm::cos(t2); T s2 = glm::sin(t2); T c3 = glm::cos(t3); T s3 = glm::sin(t3); mat<4, 4, T, defaultp> Result; Result[0][0] = c1 * c3 - c2 * s1 * s3; Result[0][1] = c3 * s1 + c1 * c2 * s3; Result[0][2] = s2 *s3; Result[0][3] = static_cast(0); Result[1][0] =-c1 * s3 - c2 * c3 * s1; Result[1][1] = c1 * c2 * c3 - s1 * s3; Result[1][2] = c3 * s2; Result[1][3] = static_cast(0); Result[2][0] = s1 * s2; Result[2][1] =-c1 * s2; Result[2][2] = c2; Result[2][3] = static_cast(0); Result[3][0] = static_cast(0); Result[3][1] = static_cast(0); Result[3][2] = static_cast(0); Result[3][3] = static_cast(1); return Result; } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> eulerAngleXZY ( T const & t1, T const & t2, T const & t3 ) { T c1 = glm::cos(t1); T s1 = glm::sin(t1); T c2 = glm::cos(t2); T s2 = glm::sin(t2); T c3 = glm::cos(t3); T s3 = glm::sin(t3); mat<4, 4, T, defaultp> Result; Result[0][0] = c2 * c3; Result[0][1] = s1 * s3 + c1 * c3 * s2; Result[0][2] = c3 * s1 * s2 - c1 * s3; Result[0][3] = static_cast(0); Result[1][0] =-s2; Result[1][1] = c1 * c2; Result[1][2] = c2 * s1; Result[1][3] = static_cast(0); Result[2][0] = c2 * s3; Result[2][1] = c1 * s2 * s3 - c3 * s1; Result[2][2] = c1 * c3 + s1 * s2 *s3; Result[2][3] = static_cast(0); Result[3][0] = static_cast(0); Result[3][1] = static_cast(0); Result[3][2] = static_cast(0); Result[3][3] = static_cast(1); return Result; } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> eulerAngleYZX ( T const & t1, T const & t2, T const & t3 ) { T c1 = glm::cos(t1); T s1 = glm::sin(t1); T c2 = glm::cos(t2); T s2 = glm::sin(t2); T c3 = glm::cos(t3); T s3 = glm::sin(t3); mat<4, 4, T, defaultp> Result; Result[0][0] = c1 * c2; Result[0][1] = s2; Result[0][2] =-c2 * s1; Result[0][3] = static_cast(0); Result[1][0] = s1 * s3 - c1 * c3 * s2; Result[1][1] = c2 * c3; Result[1][2] = c1 * s3 + c3 * s1 * s2; Result[1][3] = static_cast(0); Result[2][0] = c3 * s1 + c1 * s2 * s3; Result[2][1] =-c2 * s3; Result[2][2] = c1 * c3 - s1 * s2 * s3; Result[2][3] = static_cast(0); Result[3][0] = static_cast(0); Result[3][1] = static_cast(0); Result[3][2] = static_cast(0); Result[3][3] = static_cast(1); return Result; } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> eulerAngleZYX ( T const & t1, T const & t2, T const & t3 ) { T c1 = glm::cos(t1); T s1 = glm::sin(t1); T c2 = glm::cos(t2); T s2 = glm::sin(t2); T c3 = glm::cos(t3); T s3 = glm::sin(t3); mat<4, 4, T, defaultp> Result; Result[0][0] = c1 * c2; Result[0][1] = c2 * s1; Result[0][2] =-s2; Result[0][3] = static_cast(0); Result[1][0] = c1 * s2 * s3 - c3 * s1; Result[1][1] = c1 * c3 + s1 * s2 * s3; Result[1][2] = c2 * s3; Result[1][3] = static_cast(0); Result[2][0] = s1 * s3 + c1 * c3 * s2; Result[2][1] = c3 * s1 * s2 - c1 * s3; Result[2][2] = c2 * c3; Result[2][3] = static_cast(0); Result[3][0] = static_cast(0); Result[3][1] = static_cast(0); Result[3][2] = static_cast(0); Result[3][3] = static_cast(1); return Result; } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> eulerAngleZXY ( T const & t1, T const & t2, T const & t3 ) { T c1 = glm::cos(t1); T s1 = glm::sin(t1); T c2 = glm::cos(t2); T s2 = glm::sin(t2); T c3 = glm::cos(t3); T s3 = glm::sin(t3); mat<4, 4, T, defaultp> Result; Result[0][0] = c1 * c3 - s1 * s2 * s3; Result[0][1] = c3 * s1 + c1 * s2 * s3; Result[0][2] =-c2 * s3; Result[0][3] = static_cast(0); Result[1][0] =-c2 * s1; Result[1][1] = c1 * c2; Result[1][2] = s2; Result[1][3] = static_cast(0); Result[2][0] = c1 * s3 + c3 * s1 * s2; Result[2][1] = s1 * s3 - c1 * c3 * s2; Result[2][2] = c2 * c3; Result[2][3] = static_cast(0); Result[3][0] = static_cast(0); Result[3][1] = static_cast(0); Result[3][2] = static_cast(0); Result[3][3] = static_cast(1); return Result; } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> yawPitchRoll ( T const& yaw, T const& pitch, T const& roll ) { T tmp_ch = glm::cos(yaw); T tmp_sh = glm::sin(yaw); T tmp_cp = glm::cos(pitch); T tmp_sp = glm::sin(pitch); T tmp_cb = glm::cos(roll); T tmp_sb = glm::sin(roll); mat<4, 4, T, defaultp> Result; Result[0][0] = tmp_ch * tmp_cb + tmp_sh * tmp_sp * tmp_sb; Result[0][1] = tmp_sb * tmp_cp; Result[0][2] = -tmp_sh * tmp_cb + tmp_ch * tmp_sp * tmp_sb; Result[0][3] = static_cast(0); Result[1][0] = -tmp_ch * tmp_sb + tmp_sh * tmp_sp * tmp_cb; Result[1][1] = tmp_cb * tmp_cp; Result[1][2] = tmp_sb * tmp_sh + tmp_ch * tmp_sp * tmp_cb; Result[1][3] = static_cast(0); Result[2][0] = tmp_sh * tmp_cp; Result[2][1] = -tmp_sp; Result[2][2] = tmp_ch * tmp_cp; Result[2][3] = static_cast(0); Result[3][0] = static_cast(0); Result[3][1] = static_cast(0); Result[3][2] = static_cast(0); Result[3][3] = static_cast(1); return Result; } template GLM_FUNC_QUALIFIER mat<2, 2, T, defaultp> orientate2 ( T const& angle ) { T c = glm::cos(angle); T s = glm::sin(angle); mat<2, 2, T, defaultp> Result; Result[0][0] = c; Result[0][1] = s; Result[1][0] = -s; Result[1][1] = c; return Result; } template GLM_FUNC_QUALIFIER mat<3, 3, T, defaultp> orientate3 ( T const& angle ) { T c = glm::cos(angle); T s = glm::sin(angle); mat<3, 3, T, defaultp> Result; Result[0][0] = c; Result[0][1] = s; Result[0][2] = T(0.0); Result[1][0] = -s; Result[1][1] = c; Result[1][2] = T(0.0); Result[2][0] = T(0.0); Result[2][1] = T(0.0); Result[2][2] = T(1.0); return Result; } template GLM_FUNC_QUALIFIER mat<3, 3, T, Q> orientate3 ( vec<3, T, Q> const& angles ) { return mat<3, 3, T, Q>(yawPitchRoll(angles.z, angles.x, angles.y)); } template GLM_FUNC_QUALIFIER mat<4, 4, T, Q> orientate4 ( vec<3, T, Q> const& angles ) { return yawPitchRoll(angles.z, angles.x, angles.y); } template GLM_FUNC_QUALIFIER void extractEulerAngleXYZ(mat<4, 4, T, defaultp> const& M, T & t1, T & t2, T & t3) { T T1 = glm::atan2(M[2][1], M[2][2]); T C2 = glm::sqrt(M[0][0]*M[0][0] + M[1][0]*M[1][0]); T T2 = glm::atan2(-M[2][0], C2); T S1 = glm::sin(T1); T C1 = glm::cos(T1); T T3 = glm::atan2(S1*M[0][2] - C1*M[0][1], C1*M[1][1] - S1*M[1][2 ]); t1 = -T1; t2 = -T2; t3 = -T3; } template GLM_FUNC_QUALIFIER void extractEulerAngleYXZ(mat<4, 4, T, defaultp> const & M, T & t1, T & t2, T & t3) { T T1 = glm::atan2(M[2][0], M[2][2]); T C2 = glm::sqrt(M[0][1]*M[0][1] + M[1][1]*M[1][1]); T T2 = glm::atan2(-M[2][1], C2); T S1 = glm::sin(T1); T C1 = glm::cos(T1); T T3 = glm::atan2(S1*M[1][2] - C1*M[1][0], C1*M[0][0] - S1*M[0][2]); t1 = T1; t2 = T2; t3 = T3; } template GLM_FUNC_QUALIFIER void extractEulerAngleXZX(mat<4, 4, T, defaultp> const & M, T & t1, T & t2, T & t3) { T T1 = glm::atan2(M[0][2], M[0][1]); T S2 = glm::sqrt(M[1][0]*M[1][0] + M[2][0]*M[2][0]); T T2 = glm::atan2(S2, M[0][0]); T S1 = glm::sin(T1); T C1 = glm::cos(T1); T T3 = glm::atan2(C1*M[1][2] - S1*M[1][1], C1*M[2][2] - S1*M[2][1]); t1 = T1; t2 = T2; t3 = T3; } template GLM_FUNC_QUALIFIER void extractEulerAngleXYX(mat<4, 4, T, defaultp> const & M, T & t1, T & t2, T & t3) { T T1 = glm::atan2(M[0][1], -M[0][2]); T S2 = glm::sqrt(M[1][0]*M[1][0] + M[2][0]*M[2][0]); T T2 = glm::atan2(S2, M[0][0]); T S1 = glm::sin(T1); T C1 = glm::cos(T1); T T3 = glm::atan2(-C1*M[2][1] - S1*M[2][2], C1*M[1][1] + S1*M[1][2]); t1 = T1; t2 = T2; t3 = T3; } template GLM_FUNC_QUALIFIER void extractEulerAngleYXY(mat<4, 4, T, defaultp> const & M, T & t1, T & t2, T & t3) { T T1 = glm::atan2(M[1][0], M[1][2]); T S2 = glm::sqrt(M[0][1]*M[0][1] + M[2][1]*M[2][1]); T T2 = glm::atan2(S2, M[1][1]); T S1 = glm::sin(T1); T C1 = glm::cos(T1); T T3 = glm::atan2(C1*M[2][0] - S1*M[2][2], C1*M[0][0] - S1*M[0][2]); t1 = T1; t2 = T2; t3 = T3; } template GLM_FUNC_QUALIFIER void extractEulerAngleYZY(mat<4, 4, T, defaultp> const & M, T & t1, T & t2, T & t3) { T T1 = glm::atan2(M[1][2], -M[1][0]); T S2 = glm::sqrt(M[0][1]*M[0][1] + M[2][1]*M[2][1]); T T2 = glm::atan2(S2, M[1][1]); T S1 = glm::sin(T1); T C1 = glm::cos(T1); T T3 = glm::atan2(-S1*M[0][0] - C1*M[0][2], S1*M[2][0] + C1*M[2][2]); t1 = T1; t2 = T2; t3 = T3; } template GLM_FUNC_QUALIFIER void extractEulerAngleZYZ(mat<4, 4, T, defaultp> const & M, T & t1, T & t2, T & t3) { T T1 = glm::atan2(M[2][1], M[2][0]); T S2 = glm::sqrt(M[0][2]*M[0][2] + M[1][2]*M[1][2]); T T2 = glm::atan2(S2, M[2][2]); T S1 = glm::sin(T1); T C1 = glm::cos(T1); T T3 = glm::atan2(C1*M[0][1] - S1*M[0][0], C1*M[1][1] - S1*M[1][0]); t1 = T1; t2 = T2; t3 = T3; } template GLM_FUNC_QUALIFIER void extractEulerAngleZXZ(mat<4, 4, T, defaultp> const & M, T & t1, T & t2, T & t3) { T T1 = glm::atan2(M[2][0], -M[2][1]); T S2 = glm::sqrt(M[0][2]*M[0][2] + M[1][2]*M[1][2]); T T2 = glm::atan2(S2, M[2][2]); T S1 = glm::sin(T1); T C1 = glm::cos(T1); T T3 = glm::atan2(-C1*M[1][0] - S1*M[1][1], C1*M[0][0] + S1*M[0][1]); t1 = T1; t2 = T2; t3 = T3; } template GLM_FUNC_QUALIFIER void extractEulerAngleXZY(mat<4, 4, T, defaultp> const & M, T & t1, T & t2, T & t3) { T T1 = glm::atan2(M[1][2], M[1][1]); T C2 = glm::sqrt(M[0][0]*M[0][0] + M[2][0]*M[2][0]); T T2 = glm::atan2(-M[1][0], C2); T S1 = glm::sin(T1); T C1 = glm::cos(T1); T T3 = glm::atan2(S1*M[0][1] - C1*M[0][2], C1*M[2][2] - S1*M[2][1]); t1 = T1; t2 = T2; t3 = T3; } template GLM_FUNC_QUALIFIER void extractEulerAngleYZX(mat<4, 4, T, defaultp> const & M, T & t1, T & t2, T & t3) { T T1 = glm::atan2(-M[0][2], M[0][0]); T C2 = glm::sqrt(M[1][1]*M[1][1] + M[2][1]*M[2][1]); T T2 = glm::atan2(M[0][1], C2); T S1 = glm::sin(T1); T C1 = glm::cos(T1); T T3 = glm::atan2(S1*M[1][0] + C1*M[1][2], S1*M[2][0] + C1*M[2][2]); t1 = T1; t2 = T2; t3 = T3; } template GLM_FUNC_QUALIFIER void extractEulerAngleZYX(mat<4, 4, T, defaultp> const & M, T & t1, T & t2, T & t3) { T T1 = glm::atan2(M[0][1], M[0][0]); T C2 = glm::sqrt(M[1][2]*M[1][2] + M[2][2]*M[2][2]); T T2 = glm::atan2(-M[0][2], C2); T S1 = glm::sin(T1); T C1 = glm::cos(T1); T T3 = glm::atan2(S1*M[2][0] - C1*M[2][1], C1*M[1][1] - S1*M[1][0]); t1 = T1; t2 = T2; t3 = T3; } template GLM_FUNC_QUALIFIER void extractEulerAngleZXY(mat<4, 4, T, defaultp> const & M, T & t1, T & t2, T & t3) { T T1 = glm::atan2(-M[1][0], M[1][1]); T C2 = glm::sqrt(M[0][2]*M[0][2] + M[2][2]*M[2][2]); T T2 = glm::atan2(M[1][2], C2); T S1 = glm::sin(T1); T C1 = glm::cos(T1); T T3 = glm::atan2(C1*M[2][0] + S1*M[2][1], C1*M[0][0] + S1*M[0][1]); t1 = T1; t2 = T2; t3 = T3; } }//namespace glm