/// @ref gtx_matrix_factorisation /// @file glm/gtx/matrix_factorisation.hpp /// /// @see core (dependence) /// /// @defgroup gtx_matrix_factorisation GLM_GTX_matrix_factorisation /// @ingroup gtx /// /// Include to use the features of this extension. /// /// Functions to factor matrices in various forms #pragma once // Dependency: #include "../glm.hpp" #ifndef GLM_ENABLE_EXPERIMENTAL # error "GLM: GLM_GTX_matrix_factorisation is an experimental extension and may change in the future. Use #define GLM_ENABLE_EXPERIMENTAL before including it, if you really want to use it." #elif GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) # pragma message("GLM: GLM_GTX_matrix_factorisation extension included") #endif /* Suggestions: - Move helper functions flipud and fliplr to another file: They may be helpful in more general circumstances. - Implement other types of matrix factorisation, such as: QL and LQ, L(D)U, eigendecompositions, etc... */ namespace glm { /// @addtogroup gtx_matrix_factorisation /// @{ /// Flips the matrix rows up and down. /// /// From GLM_GTX_matrix_factorisation extension. template GLM_FUNC_DECL mat flipud(mat const& in); /// Flips the matrix columns right and left. /// /// From GLM_GTX_matrix_factorisation extension. template GLM_FUNC_DECL mat fliplr(mat const& in); /// Performs QR factorisation of a matrix. /// Returns 2 matrices, q and r, such that the columns of q are orthonormal and span the same subspace than those of the input matrix, r is an upper triangular matrix, and q*r=in. /// Given an n-by-m input matrix, q has dimensions min(n,m)-by-m, and r has dimensions n-by-min(n,m). /// /// From GLM_GTX_matrix_factorisation extension. template GLM_FUNC_DISCARD_DECL void qr_decompose(mat const& in, mat<(C < R ? C : R), R, T, Q>& q, mat& r); /// Performs RQ factorisation of a matrix. /// Returns 2 matrices, r and q, such that r is an upper triangular matrix, the rows of q are orthonormal and span the same subspace than those of the input matrix, and r*q=in. /// Note that in the context of RQ factorisation, the diagonal is seen as starting in the lower-right corner of the matrix, instead of the usual upper-left. /// Given an n-by-m input matrix, r has dimensions min(n,m)-by-m, and q has dimensions n-by-min(n,m). /// /// From GLM_GTX_matrix_factorisation extension. template GLM_FUNC_DISCARD_DECL void rq_decompose(mat const& in, mat<(C < R ? C : R), R, T, Q>& r, mat& q); /// @} } #include "matrix_factorisation.inl"