#include "scalar_constants.hpp" namespace glm { template GLM_FUNC_QUALIFIER qua exp(qua const& q) { vec<3, T, Q> u(q.x, q.y, q.z); T const Angle = glm::length(u); if (Angle < epsilon()) return qua(); vec<3, T, Q> const v(u / Angle); return qua(cos(Angle), sin(Angle) * v); } template GLM_FUNC_QUALIFIER qua log(qua const& q) { vec<3, T, Q> u(q.x, q.y, q.z); T Vec3Len = length(u); if (Vec3Len < epsilon()) { if(q.w > static_cast(0)) return qua::wxyz(log(q.w), static_cast(0), static_cast(0), static_cast(0)); else if(q.w < static_cast(0)) return qua::wxyz(log(-q.w), pi(), static_cast(0), static_cast(0)); else return qua::wxyz(std::numeric_limits::infinity(), std::numeric_limits::infinity(), std::numeric_limits::infinity(), std::numeric_limits::infinity()); } else { T t = atan(Vec3Len, T(q.w)) / Vec3Len; T QuatLen2 = Vec3Len * Vec3Len + q.w * q.w; return qua::wxyz(static_cast(0.5) * log(QuatLen2), t * q.x, t * q.y, t * q.z); } } template GLM_FUNC_QUALIFIER qua pow(qua const& x, T y) { //Raising to the power of 0 should yield 1 //Needed to prevent a division by 0 error later on if(y > -epsilon() && y < epsilon()) return qua::wxyz(1,0,0,0); //To deal with non-unit quaternions T magnitude = sqrt(x.x * x.x + x.y * x.y + x.z * x.z + x.w *x.w); T Angle; if(abs(x.w / magnitude) > cos_one_over_two()) { //Scalar component is close to 1; using it to recover angle would lose precision //Instead, we use the non-scalar components since sin() is accurate around 0 //Prevent a division by 0 error later on T VectorMagnitude = x.x * x.x + x.y * x.y + x.z * x.z; //Despite the compiler might say, we actually want to compare //VectorMagnitude to 0. here; we could use denorm_int() compiling a //project with unsafe maths optimizations might make the comparison //always false, even when VectorMagnitude is 0. if (VectorMagnitude < std::numeric_limits::min()) { //Equivalent to raising a real number to a power return qua::wxyz(pow(x.w, y), 0, 0, 0); } Angle = asin(sqrt(VectorMagnitude) / magnitude); } else { //Scalar component is small, shouldn't cause loss of precision Angle = acos(x.w / magnitude); } T NewAngle = Angle * y; T Div = sin(NewAngle) / sin(Angle); T Mag = pow(magnitude, y - static_cast(1)); return qua::wxyz(cos(NewAngle) * magnitude * Mag, x.x * Div * Mag, x.y * Div * Mag, x.z * Div * Mag); } template GLM_FUNC_QUALIFIER qua sqrt(qua const& x) { return pow(x, static_cast(0.5)); } }//namespace glm