113 lines
5.6 KiB
C++
113 lines
5.6 KiB
C++
|
/// @ref gtx_pca
|
||
|
/// @file glm/gtx/pca.hpp
|
||
|
///
|
||
|
/// @see core (dependence)
|
||
|
/// @see ext_scalar_relational (dependence)
|
||
|
///
|
||
|
/// @defgroup gtx_pca GLM_GTX_pca
|
||
|
/// @ingroup gtx
|
||
|
///
|
||
|
/// Include <glm/gtx/pca.hpp> to use the features of this extension.
|
||
|
///
|
||
|
/// Implements functions required for fundamental 'princple component analysis' in 2D, 3D, and 4D:
|
||
|
/// 1) Computing a covariance matrics from a list of _relative_ position vectors
|
||
|
/// 2) Compute the eigenvalues and eigenvectors of the covariance matrics
|
||
|
/// This is useful, e.g., to compute an object-aligned bounding box from vertices of an object.
|
||
|
/// https://en.wikipedia.org/wiki/Principal_component_analysis
|
||
|
///
|
||
|
/// Example:
|
||
|
/// ```
|
||
|
/// std::vector<glm::dvec3> ptData;
|
||
|
/// // ... fill ptData with some point data, e.g. vertices
|
||
|
///
|
||
|
/// glm::dvec3 center = computeCenter(ptData);
|
||
|
///
|
||
|
/// glm::dmat3 covarMat = glm::computeCovarianceMatrix(ptData.data(), ptData.size(), center);
|
||
|
///
|
||
|
/// glm::dvec3 evals;
|
||
|
/// glm::dmat3 evecs;
|
||
|
/// int evcnt = glm::findEigenvaluesSymReal(covarMat, evals, evecs);
|
||
|
///
|
||
|
/// if(evcnt != 3)
|
||
|
/// // ... error handling
|
||
|
///
|
||
|
/// glm::sortEigenvalues(evals, evecs);
|
||
|
///
|
||
|
/// // ... now evecs[0] points in the direction (symmetric) of the largest spatial distribution within ptData
|
||
|
/// ```
|
||
|
|
||
|
#pragma once
|
||
|
|
||
|
// Dependency:
|
||
|
#include "../glm.hpp"
|
||
|
#include "../ext/scalar_relational.hpp"
|
||
|
|
||
|
#ifndef GLM_ENABLE_EXPERIMENTAL
|
||
|
# error "GLM: GLM_GTX_pca is an experimental extension and may change in the future. Use #define GLM_ENABLE_EXPERIMENTAL before including it, if you really want to use it."
|
||
|
#elif GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED)
|
||
|
# pragma message("GLM: GLM_GTX_pca extension included")
|
||
|
#endif
|
||
|
|
||
|
namespace glm {
|
||
|
/// @addtogroup gtx_pca
|
||
|
/// @{
|
||
|
|
||
|
/// Compute a covariance matrix form an array of relative coordinates `v` (e.g., relative to the center of gravity of the object)
|
||
|
/// @param v Points to a memory holding `n` times vectors
|
||
|
/// @param n Number of points in v
|
||
|
template<length_t D, typename T, qualifier Q>
|
||
|
GLM_INLINE mat<D, D, T, Q> computeCovarianceMatrix(vec<D, T, Q> const* v, size_t n);
|
||
|
|
||
|
/// Compute a covariance matrix form an array of absolute coordinates `v` and a precomputed center of gravity `c`
|
||
|
/// @param v Points to a memory holding `n` times vectors
|
||
|
/// @param n Number of points in v
|
||
|
/// @param c Precomputed center of gravity
|
||
|
template<length_t D, typename T, qualifier Q>
|
||
|
GLM_INLINE mat<D, D, T, Q> computeCovarianceMatrix(vec<D, T, Q> const* v, size_t n, vec<D, T, Q> const& c);
|
||
|
|
||
|
/// Compute a covariance matrix form a pair of iterators `b` (begin) and `e` (end) of a container with relative coordinates (e.g., relative to the center of gravity of the object)
|
||
|
/// Dereferencing an iterator of type I must yield a `vec<D, T, Q%gt;`
|
||
|
template<length_t D, typename T, qualifier Q, typename I>
|
||
|
GLM_FUNC_DECL mat<D, D, T, Q> computeCovarianceMatrix(I const& b, I const& e);
|
||
|
|
||
|
/// Compute a covariance matrix form a pair of iterators `b` (begin) and `e` (end) of a container with absolute coordinates and a precomputed center of gravity `c`
|
||
|
/// Dereferencing an iterator of type I must yield a `vec<D, T, Q%gt;`
|
||
|
template<length_t D, typename T, qualifier Q, typename I>
|
||
|
GLM_FUNC_DECL mat<D, D, T, Q> computeCovarianceMatrix(I const& b, I const& e, vec<D, T, Q> const& c);
|
||
|
|
||
|
/// Assuming the provided covariance matrix `covarMat` is symmetric and real-valued, this function find the `D` Eigenvalues of the matrix, and also provides the corresponding Eigenvectors.
|
||
|
/// Note: the data in `outEigenvalues` and `outEigenvectors` are in matching order, i.e. `outEigenvector[i]` is the Eigenvector of the Eigenvalue `outEigenvalue[i]`.
|
||
|
/// This is a numeric implementation to find the Eigenvalues, using 'QL decomposition` (variant of QR decomposition: https://en.wikipedia.org/wiki/QR_decomposition).
|
||
|
///
|
||
|
/// @param[in] covarMat A symmetric, real-valued covariance matrix, e.g. computed from computeCovarianceMatrix
|
||
|
/// @param[out] outEigenvalues Vector to receive the found eigenvalues
|
||
|
/// @param[out] outEigenvectors Matrix to receive the found eigenvectors corresponding to the found eigenvalues, as column vectors
|
||
|
/// @return The number of eigenvalues found, usually D if the precondition of the covariance matrix is met.
|
||
|
template<length_t D, typename T, qualifier Q>
|
||
|
GLM_FUNC_DECL unsigned int findEigenvaluesSymReal
|
||
|
(
|
||
|
mat<D, D, T, Q> const& covarMat,
|
||
|
vec<D, T, Q>& outEigenvalues,
|
||
|
mat<D, D, T, Q>& outEigenvectors
|
||
|
);
|
||
|
|
||
|
/// Sorts a group of Eigenvalues&Eigenvectors, for largest Eigenvalue to smallest Eigenvalue.
|
||
|
/// The data in `outEigenvalues` and `outEigenvectors` are assumed to be matching order, i.e. `outEigenvector[i]` is the Eigenvector of the Eigenvalue `outEigenvalue[i]`.
|
||
|
template<typename T, qualifier Q>
|
||
|
GLM_FUNC_DISCARD_DECL void sortEigenvalues(vec<2, T, Q>& eigenvalues, mat<2, 2, T, Q>& eigenvectors);
|
||
|
|
||
|
/// Sorts a group of Eigenvalues&Eigenvectors, for largest Eigenvalue to smallest Eigenvalue.
|
||
|
/// The data in `outEigenvalues` and `outEigenvectors` are assumed to be matching order, i.e. `outEigenvector[i]` is the Eigenvector of the Eigenvalue `outEigenvalue[i]`.
|
||
|
template<typename T, qualifier Q>
|
||
|
GLM_FUNC_DISCARD_DECL void sortEigenvalues(vec<3, T, Q>& eigenvalues, mat<3, 3, T, Q>& eigenvectors);
|
||
|
|
||
|
/// Sorts a group of Eigenvalues&Eigenvectors, for largest Eigenvalue to smallest Eigenvalue.
|
||
|
/// The data in `outEigenvalues` and `outEigenvectors` are assumed to be matching order, i.e. `outEigenvector[i]` is the Eigenvector of the Eigenvalue `outEigenvalue[i]`.
|
||
|
template<typename T, qualifier Q>
|
||
|
GLM_FUNC_DISCARD_DECL void sortEigenvalues(vec<4, T, Q>& eigenvalues, mat<4, 4, T, Q>& eigenvectors);
|
||
|
|
||
|
/// @}
|
||
|
}//namespace glm
|
||
|
|
||
|
#include "pca.inl"
|