Exponent/glm/gtx/rotate_vector.inl

188 lines
3.7 KiB
Plaintext
Raw Normal View History

/// @ref gtx_rotate_vector
namespace glm
{
template<typename T, qualifier Q>
GLM_FUNC_QUALIFIER vec<3, T, Q> slerp
(
vec<3, T, Q> const& x,
vec<3, T, Q> const& y,
T const& a
)
{
// get cosine of angle between vectors (-1 -> 1)
T CosAlpha = dot(x, y);
// get angle (0 -> pi)
T Alpha = acos(CosAlpha);
// get sine of angle between vectors (0 -> 1)
T SinAlpha = sin(Alpha);
// this breaks down when SinAlpha = 0, i.e. Alpha = 0 or pi
T t1 = sin((static_cast<T>(1) - a) * Alpha) / SinAlpha;
T t2 = sin(a * Alpha) / SinAlpha;
// interpolate src vectors
return x * t1 + y * t2;
}
template<typename T, qualifier Q>
GLM_FUNC_QUALIFIER vec<2, T, Q> rotate
(
vec<2, T, Q> const& v,
T const& angle
)
{
vec<2, T, Q> Result;
T const Cos(cos(angle));
T const Sin(sin(angle));
Result.x = v.x * Cos - v.y * Sin;
Result.y = v.x * Sin + v.y * Cos;
return Result;
}
template<typename T, qualifier Q>
GLM_FUNC_QUALIFIER vec<3, T, Q> rotate
(
vec<3, T, Q> const& v,
T const& angle,
vec<3, T, Q> const& normal
)
{
return mat<3, 3, T, Q>(glm::rotate(angle, normal)) * v;
}
/*
template<typename T, qualifier Q>
GLM_FUNC_QUALIFIER vec<3, T, Q> rotateGTX(
const vec<3, T, Q>& x,
T angle,
const vec<3, T, Q>& normal)
{
const T Cos = cos(radians(angle));
const T Sin = sin(radians(angle));
return x * Cos + ((x * normal) * (T(1) - Cos)) * normal + cross(x, normal) * Sin;
}
*/
template<typename T, qualifier Q>
GLM_FUNC_QUALIFIER vec<4, T, Q> rotate
(
vec<4, T, Q> const& v,
T const& angle,
vec<3, T, Q> const& normal
)
{
return rotate(angle, normal) * v;
}
template<typename T, qualifier Q>
GLM_FUNC_QUALIFIER vec<3, T, Q> rotateX
(
vec<3, T, Q> const& v,
T const& angle
)
{
vec<3, T, Q> Result(v);
T const Cos(cos(angle));
T const Sin(sin(angle));
Result.y = v.y * Cos - v.z * Sin;
Result.z = v.y * Sin + v.z * Cos;
return Result;
}
template<typename T, qualifier Q>
GLM_FUNC_QUALIFIER vec<3, T, Q> rotateY
(
vec<3, T, Q> const& v,
T const& angle
)
{
vec<3, T, Q> Result = v;
T const Cos(cos(angle));
T const Sin(sin(angle));
Result.x = v.x * Cos + v.z * Sin;
Result.z = -v.x * Sin + v.z * Cos;
return Result;
}
template<typename T, qualifier Q>
GLM_FUNC_QUALIFIER vec<3, T, Q> rotateZ
(
vec<3, T, Q> const& v,
T const& angle
)
{
vec<3, T, Q> Result = v;
T const Cos(cos(angle));
T const Sin(sin(angle));
Result.x = v.x * Cos - v.y * Sin;
Result.y = v.x * Sin + v.y * Cos;
return Result;
}
template<typename T, qualifier Q>
GLM_FUNC_QUALIFIER vec<4, T, Q> rotateX
(
vec<4, T, Q> const& v,
T const& angle
)
{
vec<4, T, Q> Result = v;
T const Cos(cos(angle));
T const Sin(sin(angle));
Result.y = v.y * Cos - v.z * Sin;
Result.z = v.y * Sin + v.z * Cos;
return Result;
}
template<typename T, qualifier Q>
GLM_FUNC_QUALIFIER vec<4, T, Q> rotateY
(
vec<4, T, Q> const& v,
T const& angle
)
{
vec<4, T, Q> Result = v;
T const Cos(cos(angle));
T const Sin(sin(angle));
Result.x = v.x * Cos + v.z * Sin;
Result.z = -v.x * Sin + v.z * Cos;
return Result;
}
template<typename T, qualifier Q>
GLM_FUNC_QUALIFIER vec<4, T, Q> rotateZ
(
vec<4, T, Q> const& v,
T const& angle
)
{
vec<4, T, Q> Result = v;
T const Cos(cos(angle));
T const Sin(sin(angle));
Result.x = v.x * Cos - v.y * Sin;
Result.y = v.x * Sin + v.y * Cos;
return Result;
}
template<typename T, qualifier Q>
GLM_FUNC_QUALIFIER mat<4, 4, T, Q> orientation
(
vec<3, T, Q> const& Normal,
vec<3, T, Q> const& Up
)
{
if(all(equal(Normal, Up, epsilon<T>())))
return mat<4, 4, T, Q>(static_cast<T>(1));
vec<3, T, Q> RotationAxis = cross(Up, Normal);
T Angle = acos(dot(Normal, Up));
return rotate(Angle, RotationAxis);
}
}//namespace glm